
Maneuver Classification for Aircraft Fault
Detect ion

Nikunj C. Oza, h e m Y. Turner, Kagan Tumer, and Edward M. Huff
Computational Sciences Division

NASA Ames Research Center
Mail Stop 269-2

Moffett Field, CA 94035-1000
{oza, itumer,kagan,huff}@email. arc .nasa.gov

May 8, 2003

Abstract
Automated fault detection is an increasingly important problem in

aircraft maintenance and operation. Standard methods of fault detection
assume the availability of either data produced during all possible faulty
operation modes or a clearly-defined means to determine whether the data
provide a reasonable match to known examples of proper operation. In
the domain of fault detection in aircraft, identifying all possible faulty
and proper operating modes is clearly impossible. We envision a system
for online fault detection in aircraft, one part of which is a classifier that
predicts the maneuver being performed by the aircraft as a function of vi-
bration data and other available data. To develop such a system, we use
flight data collected under a controlled test environment, subject to many
sources of variability. We explain where our classifier fits into the envi-
sioned fault detection system as well as experiments showing the promise
of this classification subsystem.

1 Introduction
A critical aspect of the operation and maintenance of aircraft is detecting prob-
lems in their operation when they occur in flight. This allows maintenance and
flight crews to fix problems before they become severe and lead to significant
aircraft damage or even a crash. Fault detection systems designed for this pur-
pose are becoming a standard requirement in most aircraft [4, lo]. However,
most systems produce too many false alarms, mainly due to an inability to com-
pare real behavior with modeled behavior, making their reliability questionable
in practice [9]. Other systems require a clearly-defined means to determine

1

Table 1: Conceptual open loop model illustrating assumed causal relationships.

Physical + Internal +
Input (I) Response (R)
*Engine Torque .[Tooth
*Engine Speed Bending]
*[Mast Lifting] *[Backlash]
*[Mast Bending] *[Friction]
*[other] *[Heat]

.[other]

.[DAMAGE]

Measured
Output (0)
*Vibration

- x axis
- y axis
- z axis

[Nois e]
*[other]

*[Temp1

Flight +
Maneuver (M)
*Fwd. Flight
*Side Flight
~ F w d . Climb
eFwd. Descent
.Hover
*Hover Turn
*Coord. Turn
.[other] I I I

Aircraft -+
Attitude (A)
*Radar Alt.
*Airspeed
.Climb Rate
*Heading
*Bank
.Pitch
.Side Slip
*[other]

Inpuu (vibration.
bur data. CIC.)

Mancuver
Classifier

macuvcT

I

Maneuver
Classifier

I I UT+! System Pndictcd signal

Faultliia Fault? -

Figure 1: Online Fault Detection System Block Diagram.

whether the data provide a reasonable match to known examples of proper op-
eration or assume the availability of data produced during all possible faulty
operation modes [4, 5 , 101. Because of the highly safety-critical nature of the
aircraft domain application, most fault detection systems must function well
even though fault data are not available and the set of possible faults is un-
known. Models are typically used to predict the effect of damage and failures
on otherwise healthy (baseline) data [6, 91. However, while models are a nec-
essary first start, the modeled system response often does not take operational
variability into account, resulting in high false-alarm rates. Novelty detection
is one approach to overcoming this problem, addressing the problem of model-
ing the proper operation of a system and detecting when its operation deviates
significantly from normal operation [5, 71.

In this paper, we present an approach to novelty detection for in-flight air-
craft data. The data were collected as part of a research effort to understand the
sources of variability present in the actual flight environment, with the purpose
of reducing the high rates of false alarms [6, 121. In past work, we have de-

2

scribed aircraft operation conceptually according to the open-loop causal model
shown in table 1. We assume that the maneuver being performed (M) influences
the observable aircraft attitudes (A), which in turn influence the set of possibly
observable physical inputs (I) to the transmission. The physical inputs influ-
ence the transmission in a variety of ways that are not typically observable (R).
However, there are outputs that can be observed (0). Our approach to fault
detection in aircraft depends fundamentally on the assumption that the nature
of the relationships between the elements M, A, I, R, and 0 described above
change when a fault materializes. Many approaches to fault detection attempt
to model only the set of possible outputs (0) and indicate the presence of a
fault when the actual outputs do not match the model. However, this approach
is difficult because the output space is often too complicated to allow faithful
modeling and measuring differences between the modeled and actual outputs.
This latter difficulty remains even if one attempts to model the output as a
function of something that influences it such as the physical inputs or the flight
maneuver. Approaches to fault diagnosis (e.g., [17]) attempt to predict either
normal operation or one of a designated set of faults. As stated earlier, this is
not possible in the aircraft domain because the set of possible faults is unknown
and fault data are non-existent. For this reason, we envision a fault detection
system containing a classifier that models the flight maneuver (M) as a function
of the outputs (0). This allows us to measure differences between modeled and
actual operation in the space of flight maneuvers, which is a much simpler space
than the space of vibration signals (0). We would like to harness this fact in
our system.

Figure 1 is a block diagram of the system that we envision for online fault
detection. A fundamental idea is the use of multiple sources of information to
predict aspects of the state of the system being modeled, such as the maneuver
being performed and predicting faults when the system state predictions are
incompatible. In this paper, we present several maneuver classifiers, which are
depicted in figure 1 in the top two blocks marked “Maneuver Classifier.’’ These
classifiers take vibration data from various accelerometers and/or other available
data as input and predict the maneuver being performed. Multiple classifiers
that predict the maneuver may be present in the fault detection system. Mod-
els of aircraft operation that generate predictions of vibration signatures, which
are in the mold of traditional fault detection systems that we described earlier,
may also be included in this system (the lowest box marked “System Model”).
The goal of this work is to develop a fault detection system which compares the
maneuver predictions from the various maneuver classifiers and uses other ap-
propriate data to diagnose whether a fault is present based on these predictions.
For example, if a vibration data-based classifier predicts that the helicopter is
flying forward at high speed, but other data and/or subsystems indicate that
the aircraft is on the ground, then the probability that a fault is present is high.
Additionally, our fault detection system can use physical constraints. For exam-
ple, if the predicted maneuver fluctuates more rapidly than what is physically

Table 2: Flight Protocol for Each Phase of Experiment.

Obs. Ground & Primary Hover &
Order Hover Flight Maneuvers Ground

Flight 1
Pilot

Flight 2

possible, then we hypothesize that the probability that a fault is present is high.
In the remainder of this paper, section 2 discusses the two aircraft studied

and the data generated from them. We discuss the machine learning methods
that we used and the data preparation that we performed in order to use these
methods in section 3. We discuss the experimental results in section 4. We
summarize the results of this paper and discuss ongoing and future work in
section 5.

2 Aircraft Data
The data used in this work were collected from two helicopters: an AH1 Cobra
and OH58c Kiowa [6]. The data were collected by having two pilots each fly two
designated sequences of steady-state maneuvers according to a predetermined
test matrix (table 2). It uses a modified Latin-square design to counterbalance
changes in wind conditions, ambient temperature, and fuel depletion. Each of
the four flights consisted of an initial period on the ground with the helicopter
blades at flat pitch, followed by a low hover, a sequence of maneuvers drawn
from the 12 primary maneuvers, a low hover, and finally a return to ground
(the list of maneuvers is shown in table 3). Each maneuver was scheduled to
last 34 seconds in order to allow a sufficient number of cycles of the main rotor
and planetary gear assembly to apply the signal decomposition techniques used
in the previous studies [6].

Summary matrices were created from the raw data by averaging the data
produced during each revolution of the planetary gear. The summarized data
consists of 31475 revolutions of data for the AH1 and 34144 revolutions of data

4

Table 3: Aircraft Maneuvers for Phases 1 and 2.

1 Maneuver Name Symbol Description
A Forward Flight, Low Speed FFLS Fly straight, level, & forward a t 20 kts.
E Forward Flight, High Speed FFHS Fly straight, level, & forward at 60 kts.
C Sideward Flight Left SL Fly straight, level, & sideward left.
D Sideward Flight Right SR Fly straight, level, & sideward right.
E Forward Climb, Low Power FCLP Fly forward, straight, & climb at 40 psi.
F Forward Descent, Low Power FDLP Fly forward, straight, & descend at 10 psi.
G Flat Pitch on Ground G Vehicle on ground skids.
H Hover H Stationary hover.
I Hover Turn Left HTL Level hover, turning left.
J Hover Turn Right HTR Level hover, turning right.
K Coordinated Turn Left CTL Fly level, forward, & turning left.
L Coordinated Turn Right CTR Fly level, forward, & turning right.
M Forward Climb, High Power FCHP Fly forward, straight, & climb a t 50 psi.
N Forward Descent, High Power FDHP Fly forward, straight, & descend a t 50 psi.

for the OH58c. Each row, representing one revolution, indicates the maneuver
being performed during that revolution as well as the following 30 quantities:
Revolutions per minute of the planetary gear, torque (mean, standard deviation,
skew, and kurtosis), and vibration data from six accelerometers (root-mean-
square, skew, kurtosis, and a binary variable indicating whether signal clipping
occurred). For the AH1, the mean and standard deviations were available for
the following attitude data from a 1553 bus: altitude, speed, rate of climb,
heading, bank angle, pitch, and slip.

3 Methods
Sample torque and RPM data from one maneuver separated by pilot and by
flights are shown in figures 2 and 3, respectively. The highly-variable nature of
the data, as well as differences due to different pilots and different days when
the aircraft were flown, are clearly visible and make this a challenging classifi-
cation problem. To perform the necessary mapping for this problem, we chose
multilayer perceptrons (MLPs) with one hidden layer and radial basis function
(RBF) networks as base classifiers. Furthermore, we constructed ensembles of
each type of classifier, as well as ensembles consisting of half MLPs and half RBF
networks, because ensembles have been shown to improve upon the performance
of their constituent or base classifiers, particularly when the correlations among
them can be kept low [2 , 181. We now explain these methods in more detail.

3.1 Multilayer Perceptrons
The multilayer perceptron (MLP) is the most common neural network repre-
sentation (see [l] for a more detailed explanation). It is often depicted as a

5

*"

OH58 Forward Flight LOW Speed

Flights 1-4 7
59

FliQhts5-8 0
Pilot LH -
Pilot MD e

57 .

2 56
.

55

54 .

53 .

.,c

354 355 356 357 358 359 360 361
Toraue

52 ' I
354 355 356 357 358 359 360 361

Torque

Figure 2: OH58c Maneuver A (Forward Figure 3: OH58c Maneuver A (Forward
Flight Low Speed) Pilot-Separated Flight Low Speed) Flight-Separated

directed graph consisting of nodes and arcs-an example is shown in figure 4.
Each column of nodes is a layer. The leftmost layer is the i n p u t layer. The
inputs of an example to be classified are entered here. The second and third
layers are the h idden layer and the ou tpu t layer, respectively. Information flows
from the input layer to the hidden layer and then to the output layer via a
set of arcs. The nodes within a layer are not connected to each other. In our
example, every node in one layer is connected to every node in the next layer,
but this is not required in general. Also, an MLP can have more or less than
one hidden layer and can have any number of nodes in each hidden layer. One
hidden layer is considered standard for applications in order to avoid overfitting
(fitting the training data so precisely that the network captures artifacts specific
to that training set and therefore performs poorly on new data). The number
of hidden units is normally chosen in the manner we did, which is by training
with different numbers of hidden units and choosing the number that yields the
highest performance on a separate dataset not used for training.

Each non-input node, its incoming arcs, and its single outgoing arc constitute
a neuron , which is the basic computational element of an MLP. Each incoming
arc multiplies the value coming from its origin node by the weight assigned to
that arc and sends the result to the destination node. The destination node
adds the values presented to it by all the incoming arcs, transforms it with
a nonlinear act ivat ion function (e.g., a sigmoid function), and then sends the
result along the outgoing arc. For example, the value returned by a hidden node
zj in our example MLP is

/ A \

where A is the number of input nodes, w$) is the weight on the arc in the kth
layer of arcs that goes from unit i in the kth layer of nodes to unit j in the next

6

0

0

0

0

0

0

0

0

0

inputs hidden outputs
units

Figure 4: An example of a feedforward multilayer perceptron.

layer (so wii) is the weight on the arc that goes from input unit i to hidden unit
j) , g is a nonlinear activation function, and [AI is the number of input nodes.
A commonly used activation function is the sigmoid function:

1

E 1 + e x p (- a) .

The value returned by an output node yj is

where Z is the number of hidden units. The outputs are clearly nonlinear func-
tions of the inputs. MLPs used for classification problems typically have one
output per class. The example MLP depicted in figure 4 is of this type. The
outputs lie in the range [0,1]. Each output value is a measure of the network’s
confidence that the example presented to it is a member of that output’s corre-
sponding class. Therefore, the class corresponding to the highest output value
is returned as the prediction.

MLP learning performs nonlinear regression given a training set. The most
widely used method for setting the weights in an MLP is the backpropagation

7

algorithm [3, 111. For each example in the training set, its inputs are presented
to the input layer of the network and the predicted outputs are calculated.
Then the difference between each predicted output and the corresponding target
output is calculated. The gradient of this error with respect to the weights on
the network’s arcs is also calculated. The weights are then adjusted according to
this gradient so that if the training example is presented to the network again,
then the error would be less. The learning algorithm typically cycles through
the training set many times-each cycle is called an epoch in the neural network
literature.

For both data sets, we determined the number of hidden units experimen-
tally. For MLPs, we explored hidden layer sizes ranging from 5 to 100 in in-
crements of 5, and settled on 25 hidden units for the AH1 and 65 units for
the OH58c. We used a learning rate and momentum term of 0.2, and trained
for 100 epochs. The performances of the MLPs were fairly insensitive to the
number of hidden units and kernels and the learning parameters. We created
280 MLPs for each helicopter-each MLP was given a different set of random
initial weights before training, but were trained using the same training sets.

Past work [8] has asserted that MLPs are not as well-suited to fault detection
as distance-based classifiers because real data often falls outside the range of
the training data, requiring the MLP to extrapolate, which it does not do as
well as distance-based classifiers. The truth is not so simple. In particular, in
order to use a distance-based classifier, one has to choose a distance function
that properly weighs all the attributes relative to each other. Choosing such
a distance function is very difficult. Also, the approach in [8] uses a nearest-
neighbor classifier to classify examples as coming from normal operation or one
of a designated set of faulty operation modes. As discussed earlier, this approach
is not applicable to our aircraft fault detection domain because the set of possible
faults is unknown and fault data is nonexistent. Also, as asserted in [8], nearest-
neighbor classifiers do not require significant training time because training
consists of merely storing the training examples. This is clearly impractical
because of the amount of training da ta collected.

3.2 Radial Basis Function Networks
As its name implies, radial basis function (RBF) networks (see [l] for a more
detailed explanation) create a set of spherical basis functions from the trai.ning
set, and then fit the outputs using these basis functions. In particular, the fitted
function is of the form

J

j=1

8

where the J basis functions $j(x) (j E (1’2,. . . , J }) are

and IC indexes over the outputs-just as with MLPs, RBF networks used for
classification typically have as many outputs as possible classes. The functions
4j (x) are Gaussian radial basis functions with means pj and variances ui. These
parameters are determined in the first stage of RBF network learning using an
algorithm that finds the means and widths of clusters of data points in the
input space (the space of x values). Therefore, the outputs (y’s) are not used in
the first stage of learning. The cluster means and widths correspond to means
and variances of the radial basis functions. The second stage determines the
parameters Wkj . These parameters represent different possible output values.
The predicted output for a new input is calculated as a linear combination of
the W k , j ’ s weighted by $j(x), which measures how far the new example is from
the center of the j ’ th RBF.

For the RBF networks, we used 100 centers for the OH58c data and deter-
mined each kernel’s center and width using the nearest 300 patterns.’ For the
AH1 data, we used 55 kernels with the centers and widths determined by the
nearest 500 patterns. For each helicopter, we created 100 RBF networks, each
of which had a different set of centers.2

3.3 Ensembles
Ensembles are combinations of multiple base models, each of which may be a
traditional machine learning model such as an MLP or RBF network. When a
new example is to be classified, it is presented to the ensemble’s base models
and their outputs are combined in some manner (e.g., voting or averaging) to
yield the ensemble’s prediction. Intuitively, we would like to have base models
that perform well and do not make highly-correlated errors. We can see the
intuition behind this point graphically in figure 5. The goal of the learning
problem depicted in the figure is to separate the positive examples (’+’) from
the negative examples (’-’). The figure depicts an ensemble of three linear
classifiers. For example, classifier C classifies examples above it as negative
examples and examples below it as positive examples. Note that none of the
three lines separates the positive and negative examples perfectly. For example,
classifier C misclassifies all the positive examples in the top half of the figure.
Indeed, no linear classifier can separate the positive examples from the negative

‘That is, for each center, the 300 training cases closest to it in Euclidian distance were
used to determine its radius. Therefore, the radius increases with the number of neighboring
training cases used.

2Due to the large computation time needed to obtain the centers and widths of the kernels
on such large data sets, we only used 100 RBF networks as opposed to 280 MLPs.

9

++ ++ + +

Figure 5: An ensemble of linear classifiers. Each line A, B, and C is a linear
classifier. The boldface line is the ensemble that classifies new examples by
returning the majority vote of A, B, and C.

examples. However, the ensemble of three lines, where each line gets one vote,
correctly classifies all the examples-for every example, at least two of the three
linear classifiers correctly classifies it, so the majority is always correct. This is
the result of having three very different linear classifiers in the ensemble. This
example clearly depicts the need to have base models whose errors are not highly
correlated. If all the linear classifiers make mistakes on the same examples (for
example if the ensemble consisted of three copies of line A), then a majority
vote over the lines would also make mistakes on the same examples, yielding no
performance improvement.

The intuition that we have just described has been formalized [14, 161. En-
semble learning can be justified in terms of the bias and variance of the learned
model. It has been shown that, as the correlations of the errors made by the
base models decrease, the variance of the error of the ensemble decreases and
is less than the variance of the error of any single base model. If Eadd is the
average additional error of the base models (beyond the Bayes error, which is
the minimum possible error that can be obtained), Et:: is the additional error
of an ensemble that computes the average of the base models' outputs, and
p is the average correlation of the errors of the base models, then Tumer and
Ghosh [14] have shown that

where M is the number of base models in the ensemble. The effect of the

10

- .

correlations of the errors made by the base models is made clear by this equation.
If the base models always agree, then p = 1; therefore, the errors of the ensemble
and the base models would be the same and the ensemble would not yield any
improvement. If the base models’ errors are independent, then p = 0, which
means the ensemble’s error is reduced by a factor of M relative to the base
models’ errors. It is possible to do even better by having base models with
slightly anti-correlated errors. If p = -A, then the ensemble’s error would
be zero.

For both data sets and classifiers, we used simple averaging ensembles. That
is, since MLPs and RBF networks return a measure of confidence for each
possible class, the averaging ensemble calculates, for each class, the average of
all the networks’ confidences in that class. The class with the highest average is
returned as the ensemble’s prediction. Though simple to apply, such ensembles
perform remarkably well on a variety of data sets [2, 13, 141. We experimented
with ensembles consisting of 2 to 100 base classifiers for MLP and MLP/RBF
ensembles, and 2 to 50 base classifiers for RBF ensembles, although performance
improvements after 10 base classifiers were marginal. These ensembles consisted
of random samples drawn from the 280 MLPs and 100 RBF networks that we
created for the single-network experiments. For each size of ensemble, we drew
20 sets of random samples and report the results as averages over these runs.

3.4 Data Preparation
We created data sets for each of the two aircraft by combining its 176 summary
matrices. This resulted in 31475 patterns (revolutions) for the AH1 and 34144
for the OH58c. Both types of classifiers were trained using a randomly-selected
two-thirds of the data (21000 examples for the AH1, 23000 for the OH58c)
and were tested on the remainder for the first set of experiments. For both
aircraft, we used various subsets of the inputs. In particular, for the AH1, we
ran experiments using only the bus data and only the vibration data as inputs,
in addition to using all the data.

In addition, we calculated the confusion matrix of every classifier we created.
Entry (i , j) of the confusion matrix of a classifier states the number of times
that an example of class i is classified as class j. In examining the confusion ma-
trices of the classifiers (see table 4 for an example of a confusion matr ix-entry
(1 , l) is in the upper left corner), we noticed that particular maneuvers were
continually being confused with one another. In particular, the three hover ma-
neuvers (8-Hover, 9-Hover Turn Left, and 10-Hover Turn Right) were frequently
confused with one another and the two coordinated turns (ll-Coordinated Turn
Left and 12-Coordinated Turn Right) were also frequently confused (the counts
associated with these errors are shown in boldface type in table 4.) These sets
of maneuvers are similar enough to one another that misclassifications within
these groups are unlikely to imply the presence of faults. Therefore, for the
second set of experiments, we recalculated the classification accuracies allowing

11

. .

Table 4: Sample confusion matrix for OH58c (MLP).

for these misclassifications. For our third set of experiments, we consolidated
these two sets of maneuvers in the data before running the experiments. That
is, we combined the hover maneuvers into one class and the coordinated turns
into one class, yielding a total of 11 possible predictions instead of the original
14. We expected the performance to be best for this third set of experiments
because, informally, the classifiers do not have to waste resources distinguishing
among the two sets of similar maneuvers.

Finally, we used the knowledge that a helicopter needs some time to change
maneuvers. That is, two sequentially close patterns are unlikely to come from
different maneuvers. To obtain results that use this “prior” knowledge, we
tested on sequences of revolutions by averaging the classifiers’ outputs on a
window of examples surrounding the current one. In one set of experiments,
we averaged over windows of size 17 (8 revolutions before the current one, the
current one, and 8 revolutions after the current one) which corresponds to about
three seconds. Because the initial training and test sets were randomly chosen
from this sequence, this averaging could not be performed on the test set alone.
Instead it was performed on the full data set for both helicopters. To allow
meaningful comparisons of these results, we also computed the errors of the
single-revolution classifiers on this full dataset and present them in tables 6
and 8.3

4 Results
In this section we describe the experimental results that we have obtained so
far. We first discuss results on the OH58c helicopter. In table 5 , the column

3We performed this windowed averaging as though the entire data were collected over a
single flight. However, it was in fact collected in stages, meaning that there are no transitions
between maneuvers. We show these results to demonstrate the applicability of this method to
sequential data obtained in actual flight after training the network on “static” single revolution
patterns.

12

Table 5: OH58c Single Revolution Test Set Results.

Base
Type

MLP

RBF

MLP/
RBF

N Single Corr Post-Run

1 79.789 f 0.072 - 92.709 f 0.055
4 81.997 f 0.065 0.4193 93.820 f 0.044
10 82.441 f 0.045 0.4193 94.015 f 0.028

100 82.771 f 0.016 0.4199 94.133 f 0.011

4 75.817 f 0.048 0.7164 89.485 f 0.047
10 75.871 f 0.040 0.7185 89.498 f 0.034
50 75.908 f 0.016 0.7162 89.506 f 0.011
2 80.190 f 0.079 0.3687 92.834 f 0.065
4 80.946 f 0.059 0.4352 93.189 f 0.042
10 81.406 f 0.043 0.4574 93.403 f 0.039

100 81.543 f 0.020 0.4681 93.463 f 0.017

Rev Consolidated

1 75.451 f 0.103 - 89.305 f 0.080 -
0.7046
0.7058
0.7058
0.3176
0.3997
0.4273
0.4392

marked “Single Rev” shows the results of running individual networks and en-
sembles of various sizes on the summary matrices randomly split into training
and test sets. We only present results for some of the ensembles we constructed
due to space limitations and because the ensembles exhibited relatively small
gains beyond N = 10 base models. MLPs and ensembles of MLPs outperform
RBFs and ensembles of RBFs consistently. The ensembles of MLPs improve
upon single MLPs to a greater extent than ensembles of RBF networks do upon
single RBF networks, indicating that the MLPs are more diverse than the RBF
networks. This is corroborated by the fourth column (marked cor^")^ which
shows that the average correlations among the base models are much higher for
ensembles of RBF networks than ensembles of MLPs. Mixed ensembles perform
worse than pure-MLP ensembles and better than pure-RBF ensembles for all
numbers of base models. The correlations of the mixed ensembles are larger
than those of the pure-MLP ensembles. This shows that RBF networks did not
add enough diversity to make mixed ensembles outperform pure-MLP ensem-
bles. The standard errors of the mean performances decrease with increasing
numbers of base models as is normally the case with ensembles. The column
marked “Post-Run Consolidated” shows the single revolution results after al-
lowing for confusions among the hover maneuvers and among the coordinated
turns, consolidating them into single classes (hover and coordinated turns). As
expected, the performances improved dramatically. The column “Pre-Run Con-

90.460 f 0.169
90.912 f 0.056
90.987 f 0.032
91.018 f 0.014
93.777 f 0.046
94.097 f 0.048
94.348 f 0.025
94.457 f 0.011

0.4443
0.4395
0.4374

0.5877
0.6009
0.6028
0.2905
0.3788
0.3941 i 0.4056

4Each correlation in this paper is the average of the correlations of every pair of base
classifiers in the ensemble. We calculate the correlation of a pair of classifiers as the number
of test patterns that the two classifiers agree on but misclassify, divided by the number of
patterns that at least one classifier misclassifies. Note that this is not the posterior-based
correlation used in [14, 151. A correlation of “x” in any table indicates that there were no
training patterns misclassified by any base classifiers; therefore, the correlation is undefined.

13

. .

Corr Window 17 Corr
Post-Consolidated

- 96.579 f 0.066 -
0.5014 96.799 f 0.026 0.6145
0.5013 96.820 f 0.018 0.6255

Table 6: OH58c Full Data Set Results.

Window 17
Pre-Consolidat ed
97.586 f 0.078
97.635 f 0.041
97.729 f 0.031

Window
of 17

90.922 f 0.074
91.128 f 0.064

82.564 f 0.154
RBF 82.634 f 0.059

0.6067

0.5870
0.6001
0.6072
0.3419
0.4383
0.4576
0.4706
Corr

-
0.4443
0.4372
0.4355

0.6027
0.6157
0.6182
0.2883
0.3783
0.3948
0.4076

-

1 50 1 82.644 f 0.019
I 2 I 88.674 f 0.108

Type

MLP

RBF

MLP/
RBF

MLP/ 88.895 f 0.078 1 RBF I f0 1 89.140 f 0.057

Riv
1 82.097 f 0.072
4 84.304 f 0.049
10 84.750 f 0.043
100 85.048 f 0.012
1 76.406 f 0.099
4 76.799 * 0.040
10 76.836 f 0.033
50 76.910 f 0.011
2 82.146 f 0.075
4 82.877 f 0.053
10 83.332 f 0.036

100 83.505 f 0.015

I 100 1 89.320 f 0.025
Base I N I Sinele

-
0.4069
0.4075
0.4081

-
0.7164
0.7186
0.7162
0.3613
0.4293
0.4516
0.4618

Post Consolidated Pre-Consolidated
93.539 f 0.058 - 94.495 f 0.064
94.622 f 0.039 0.4019 95.321 f 0.035
94.805 f 0.028 0.4029 95.540 f 0.029
94.922 f 0.011 0.4036 95.595 f 0.008
89.680 f 0.077 - 90.788 f 0.147
89.872 * 0.039 0.7142 91.187 f 0.045
89.902 f 0.027 0.7162 91.244 f 0.027
89.948 f 0.007 0.7143 91.271 f 0.013
93.523 f 0.061 0.3172 94.587 f 0.049
93.854 f 0.041 0.4022 94.876 f 0.051
94.066 f 0.029 0.4291 95.089 f 0.024
94.142 f 0.015 0.4406 95.163 f 0.014

0.5052 1 1 97.063 f 0.140 I 0.6290)I 97.695 f 0.006
- 1 1 92.831 f 0.103 I - II 94.611 f 0.124

92.882 f 0.047 0.7755 94.548 f 0.063 8:;::;)I 92.895 f 0.043 1 0.7758 11 94.517 f 0.029
0.7505 1 1 92.901 f 0.013 I 0.7747 1) 94.524 f 0.012
0.3652 1 1 95.910 f 0.059 I 0.3596 I1 97.155 f 0.045

95.902 f 0.040 97.145 f 0.067 8%: 11 95.980 f 0.033 1 ~:~~~~ 1) 97.226 f 0.032
0.4937 1 1 96.003 f 0.012 I 0.5335 (1 97.204 f 0.009
Corr I I Sinale Rev I Corr II Sinnle Rev

solidated” shows the single revolution results on the summary matrices in which
the hovers and coordinated turns were consolidated as described in section 3.4.
The performances here were consistently the highest as we hypothesized.

The top half of table 6 shows the results of performing the windowed averag-
ing described in the previous section in the column marked “Window of 17.” The
columns “Window 17 Post-Consolidated” and “Window 17 Pre-Consolidated”
give the results allowing for the confusions mentioned earlier. The bottom half
of the table gives the full set errors of the single-revolution classifiers. We can
clearly see the benefits of windowed averaging, which serves to smooth out some
of the noise in the data.

Table 7 shows the results with the AH1 summary matrices randomly split
into training and test sets. Table 8 has the windowed averaging and single-
revolution classifier results, respectively, on the full AH1 dataset. These results
are substantially better than the OH58c results. We expected this because

-

14

. -

Corr

-
0.1100

X
-

0.3750
0.3824
0.3791
0.0045
0.0859
0.1222

X

X

Table 7 : AH1 Single Revolution Test Set Results.

Pre-Run
Consolidated

99.990 f 0.002
99.997 f 0.001
99.994 f 0.001
99.992 f 0.001
99.695 f 0.011
99.751 f 0.009
99.757 f 0.005
99.761 f 0.002
99.994 f 0.002
99.998 f 0.001
99.998 f 0.001
100.000 f 0.000

50

100

Single
Rev

96.752 f 0.059
97.284 f 0.031
97.448 f 0.027
97.542 f 0.006
95.669 f 0.059
95.946 f 0.029
95.911 f 0.023
95.946 f 0.009
97.040 f 0.054
97.318 f 0.025
97.429 f 0.018
97.521 f 0.011

Corr 1 1 Post-Run
1 1 Consolidated

- I I 99.843 f 0.032
0.4155 1 1 99.975 f 0.010
0.4130 99.992 f 0.001
0.4128 1 1 99.995 f 0.001

- I1 99.626 f 0.017

the AH1 is a heavier helicopter, so it is less affected by conditions that tend
to introduce noise such as wind changes. With the AHl’s summary matrices
without consolidation, the mixed ensembles outperform the pure ensembles for
small numbers of base models but perform worse than the MLP ensembles
for larger numbers of base models. With consolidation, the mixed ensembles
outperform the pure ensembles more often; however, the performances are all
very high. Once again, we can see that ensembles of MLPs outperform single
MLPs to a greater extent than ensembles of RBF networks outperform single
RBF networks, so the RBFs are not as different from one another. Unlike with
the OH58c, with the AH1, adding a few RBF networks to an MLP ensemble
helped. The standard errors of the mean performances tend to decrease with
increasing numbers of base models just as with the OH58c.

On the AH1, the hover maneuvers were frequently confused just as they were
on the OH58c, but the coordinated turns were not confused. Taking this con-
fusion into account boosted performance significantly. The windowed averaging
approach did not always yield improvement when allowing for the maneuver con-
fusions, but helped when classifying across the full set of maneuvers. However,
in all cases when windowed averaging did not help, the classifier performance
was at least 99.6%, so there was very little room for improvement.

5 Discussion
In this paper, we presented an approach to fault detection that contains a sub-
system to classify an operating aircraft into one of several states. More specifi-
cally, the proposed subsystem determines the maneuver being performed by an

Corr

-
X
X
X
-

0.4230
0.4251
0.4215
0.0049

X
X
X

15

. -

0.3148
0.3577
0.3739
Corr

-
0.3966
0.3973
0.3981

-
0.6369
0.6456
0.6321
3.2933
3.3539
3.3899
3.3978

Table 8: AH1 Full Data Set Results.

99.682 f 0.004 0.3085 99.901 f 0.013
99.683 f 0.003 0.3396 99.918 f 0.002
99.687 f 0.001 99.920 f 0.001

Single Rev Corr Single Rev
Post-Consolidated Pre-Consolidated

99.992 f 0.009 99.826 f 0.037 -
99.975 f 0.014 0.3795 99.997 f 0.007
99.994 f 0.009 0.3824 99.997 f 0.005
99.996 f 0.009 0.3836 99.997 f 0.001

- 99.726 f 0.012 99.676 f 0.014
99.738 f 0.005 0.6192 99.767 f 0.008
99.742 f 0.009 0.6272 99.773 f 0.009
99.747 f 0.000 0.6137 99.781 f 0.002
99.984 f 0.000 0.0073 99.997 f 0.005
99.988 f 0.005 0.0915 99.998 f 0.005
99.993 f 0.005 0.1225 99.999 f 0.003
99.999 f 0.005 X 100.000 f 0.000

Window
of 17

98.779 f 0.021

96.662 f 0.102
RBF 96.988 f 0.042

1 50 I 97.003 f 0.008
I 2 1 98.256 f 0.064

MLP/ 98.482 f 0.034 I RBF I l"0 1 98.475 f 0.028 I 100 1 98.553 f 0.005
I Base I N I Sinale

97.683 f 0.013

95.743 f 0.067
RBF 96.063 f 0.032

I 50 1 96.067 f 0.005
I 2 I 97.231 f 0.055

97.502 f 0.028

100 97.659 f 0.008 1 1 l"0 1 97.570 f 0.018 ,

Corr I 1 Window 17 I Corr 1 1 Window 17 I (Post-Consolidated I 1 1 Pre-Consolidated
- I1 99.737 f 0.028 I - II 100.000 f 0.000 .. . ~ . . ~

99.811 f 0.005 100.000 f 0.000 0 " : ~ ~ ~ ~ /I 99.815 f 0.002 1 0 " : ~ ~ ~ ~ 11 100.000 f 0.000
0.4055) I 99.816 f 0.001 1 0.4127 100.000 f 0.000

- I1 99.653 f 0.010 - II 99.404 f 0.013 I
99.431 f 0.012 0.6607 99.659 f 0.021 i:E!Et)I 99.428 f 0.008 I 0.6636 11 99.676 f 0.007

0.6735 1 1 99.438 f 0.003 I 0.6645 11 99.696 f 0.003
0.2313 I1 99.690 f 0.006 I 0.1915 1 1 99.908 f 0.003

Corr

-
X
X
X
-

0.6098
0.6049
0.6076
0.0000

X
X
X

Corr
-
X
X
X
-

0.4129
0.4156
0.4150
o.0025

X
X
X

16

- .

All
Bus

Non-Bus

Table 9: AH1 Bus and Non-Bus Results

I Inputs I Single I S ingle Rev 1 1 Window I Window of 1
Re% Con&lidated of 17 17 Consolidated

96.752 f 0.059 99.843 f 0.032 98.344 f 0.059 99.737 f 0.028
90.380 f 0.110 95.871 f 0.091 91.209 f 0.126 96.027 f 0.086
87.884 f 0.228 93.731 f 0.171 92.913 f 0.355 96.110 f 0.236

P(agree) I 79.523 f 0.247 I 90.063 f 0.202 I[85.609 f 0.320 I 93.393 f 0.247 I

aircraft as a function of vibration data and any other available data. Through
experiments with two helicopters, we demonstrated that the subsystem is able
to determine the maneuver being performed with good reliability. These results
show great promise in classifying the correct maneuver with high certainty. Fu-
ture work will involve applying this approach to “free-flight data”, where the
maneuvers are not static or steady-state, and transitions between maneuvers
exist.

The results presented in this paper address the maneuver classification por-
tion of the online fault detection system envisioned in this research and shown
in figure 1. To address the overall detection problem, future work will involve
experiments to determine the probabilities of agreement between different clas-
sifiers, to detect possible faults when there is a mismatch. For example, for
the AH1 helicopter, just the data from a 1553 bus (as described in section 2)
were used to train some classifiers and compared to other classifiers that used
all except the bus data. Table 9 shows the results of training 20 single MLPs on
these data using the same network topology as for the other MLPs trained on
all the AH1 data. They performed much worse than the single MLPs trained
with all the inputs presented at once. The last line in the table indicates the
percentage of maneuvers for which the two types of classifiers agreed.

Recall from section 1 that we would like classifier disagreement to indicate
the presence of a fault; therefore, we would like these agreement probabilities to
be much higher. However, we hypothesize that we can use the bus data in a much
simpler way. For example, if a vibration data-based classifier predicts that the
aircraft is performing a forward flight, but the bus data indicate that altitude is
zero, then the probability of a fault is high. We do not necessarily need a system
that returns the maneuver as a function of all the variables that constitute the
bus data. In this example, we merely need to know that a zero altitude is
inconsistent with a forward flight. We plan to perform a detailed study of
the collected bus data so that we may construct simple classifiers representing
knowledge of the type just mentioned and use them to find inconsistencies such
as what we just described.

There is ongoing work within our research group to model aircraft engine
operation from “first principles.” In particular, models of the gear system are

17

- .

being prepared so tha t simulated d a t a may be collected. We plan to use this
simulation to insert cracks and other types of faults in the gear system in order
to learn how the data changes as a function of these faults. This information
can be used to mathematically insert faults into the real data. This gives us the
fault d a t a tha t we clearly cannot collect from the aircraft directly. We hope to
generate such fault data and test whether our classification subsystems react to
fault d a t a in the way we expect.

References
[l] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

[2] L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[3] A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Blaisdell Publishing Co.,

[4] Robert Campbell, Amulya Garga, Kathy McClintic, Mitchell Lebold, and Carl
Byington. Pattern recognition for fault classification with helicopter vibration
signals. In American Helicopter Society 57th Annual Forum, 2001.

[5J Paul Hayton, Bernhard Scholkopf, Line1 Tarassenko, and Paul Anusiz. Support
vector novelty detection applied to jet engine vibration spectra. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information
Processing Systems-13, pages 946-952. Morgan Kaufmann, 2001.

[6] Edward M. Huff, h e m Y. Tumer, Eric Barszcz, Mark Dzwonczyk, and James
McNames. Analysis of maneuvering effects on transmission vibration patterns in
an AH-I cobra helicopter. Journal of the American Helicopter Society, 2002.

[7] Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection ap-
proach to classification. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pages 518-523, Montreal, Canada, 1995. Morgan Kauf-
mann.

Diagnosis using backpropagation neu-
ral networks-analysis and criticism. Computers and Chemical Engineering,

[9] D.A. McAdams and I.Y. Tumer. Towards failure modeling in complex dynamic
systems: impact of design and manufacturing variations. In ASME Design for
Manufacturing Conference, volume DETC2002/DFM-34161, September 2002.

[lo] Sunil Menon and Rida Hamza. Machine learning methods for helicopter hums. In
Proceedings of the 56th Meeting of the Society for Machinery Failure Prevention
Technology, pages 49-55, 2002.

[ll] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Bradford Books/MIT Press, Cambridge, Mass, 1986.

New York, 1995.

1969.

[8] M. A. Kramer and J. A. Leonard.

14(12):1323-1338, 1990.

18

[12] I.Y. Tumer and E.M. Huff. On the effects of production and maintenance varia-
tions on machinery performance. Journal of Quality in Maintenance Engineering,

[13] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined
neural classifiers. Pattern Recognition, 29(2):341-348, February 1996.

[14] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classi-
fiers. Connection Science, Special Issue on Combining Artificial Neural Networks:
Ensemble Approaches, 8(3 & 4):385-404, 1996.

[15] K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern classi-
fication. In A. J. C. Sharkey, editor, Combining Artificial Neural Nets: Ensemble
and Modular Multi-Net Systems, pages 127-162. Springer-Verlag, London, 1999.

[16] Kagan Tumer. Linear and Order Statistics Combiners for Reliable Pattern Clas-
sification. PhD thesis, The University of Texas, Austin, TX, May 1996.

[17] V. Venkatasubramanian, R. Vaidyanathan, and Y. Yamamoto. Process fault de-
tection and diagnosis using neural networks-i. steady-state processes. Computers

8(3):226-238, 2002.

' and Chemical Engineering, 14(7):699-712, 1990.

[18] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.

19

